$\mathrm{GL}(2)$-structures in dimension four, $H$-flatness and integrability
نویسندگان
چکیده
منابع مشابه
Integrability of Jacobi Structures
We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu [20]. The methods used are those of CrainicFernandes on A-paths and monodr...
متن کاملNull Kähler structures, Symmetries and Integrability
I feel honoured to be able to make this small contribution to the celebration of Jerzy Plebański’s 75th birthday. Plebański has presumably regarded his work on complex relativity as a step towards producing general solutions to the Einstein equations on a real Lorentzian manifold. No one in the mid-seventies could expect that his contributions to the field would underlie the relation between tw...
متن کاملIntegrability of Jacobi and Poisson structures
— We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu. The methods used are those of Crainic-Fernandes on A-paths and monodrom...
متن کاملCharacterization of some projective special linear groups in dimension four by their orders and degree patterns
Let $G$ be a finite group. The degree pattern of $G$ denoted by $D(G)$ is defined as follows: If $pi(G)={p_{1},p_{2},...,p_{k}}$ such that $p_{1}
متن کاملStructures in Dimension 7
The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n − 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2019
ISSN: 1019-8385,1944-9992
DOI: 10.4310/cag.2019.v27.n8.a7